This section covers how to set up and launch the training process for your LoRA-adapted LLaMA-2 model.
from transformers import TrainingArguments, Trainer, DataCollatorForLanguageModeling
training_args = TrainingArguments(
output_dir="./lora-llama2-about_me",
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
learning_rate=2e-4,
num_train_epochs=20,
logging_steps=10,
save_strategy="epoch",
eval_strategy="epoch",
fp16=True,
push_to_hub=False
)
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
data_collator=data_collator
)
trainer.train()
Below is a diagram illustrating the LoRA fine-tuning training workflow:
Previous: LoRA Configuration
Next: Evaluation